
Personalized Reputation Management in P2P Networks

Paul - Alexandru Chirita1, Wolfgang Nejdl1, Mario Schlosser2, and Oana Scurtu1

1 L3S Research Center / University of Hannover
Deutscher Pavillon Expo Plaza 1

30539 Hannover, Germany
{chirita,nejdl,scurtu }@l3s.de

2 McKinsey & Company Inc. / Stanford University
schloss@db.stanford.edu

Abstract. P2P networks have become increasingly popular in the recent years.
However, their open, distributed and anonymous nature makes them very vulner-
able against malicious users who provide bad responses to requests from other
peers. Motivated by this observation, various solutions for distributed reputation
systems have been presented recently. In this paper, we describe the first repu-
tation system which incorporates both user-individual personalization and global
experiences of peers in the network, for the distributed computation of reputa-
tion values. We also present a secure method to compute global trust values, thus
assuring identification and isolation of malicious peers. Finally, our simulations
show that our system is robust even against attacks from groups of malicious
peers deliberately cooperating to subvert it.

1 Introduction

P2P networks are powerful distributed infrastructures allowing any peer to search for
and offer content and services. They are capable of handling enormous amounts of
resources while maintaining an organized and balanced topology. However, because
of their open nature, they also require more complex reputation schemes, as malicious
users can introduce corrupt data and/or harmful services much easier than in centralized
systems. Such reputation algorithms are usually based on aggregating the trustworthi-
ness information collected by each peer with that of several or all other peers, thus
generating a micro or macroweb of trust.

As the size of current P2P networks is continuously increasing, recent research has
concentrated on designing more personalized trust management algorithms, while also
addressing their robustness against attacks of malicious peers. Some of these techniques
employ only local computations on sub-graphs of the entire P2P network [15, 9]. Their
output is personalized at the cost of not considering global experiences of peers. [11]
tackles this, but only for statements from the Semantic Web. Finally, techniques which
include experiences of all peers [8] do not address the issue of personalization.

In this paper we introduce a novel algorithm for computing personalized reputation
values in P2P networks and test its robustness against several possible attacks in a sim-
ulated P2P environment. We use a real-world experimental setup simulating power-law
distributions on peer links as well as content distribution, as can be observed in many
current P2P networks.

We start with a short introduction of algorithms related to our research in Section
2. The distributed computation of personalized reputation values is introduced in Sec-
tion 3, and then extended into a secure version in Section 4. Section 5 presents our
experimental results, section 6 contains our conclusions.

2 Background and Previous Work

2.1 Trust and Reputation

Although the area of reputation algorithms has received increased attention recently,
some issues are still left open. [15] gives a very good overview over existing approaches.
The paper contains the first categorization of trust metrics and a definition of trust ele-
ments (model, metrics, etc.) in the Semantic Web. Its main contribution isAppleseed, a
fixed-point personalized trust algorithm inspired by spreading activation models. Simi-
larly, an important aspect for us is the introduction of ”backward trust propagation” (i.e.
virtual edges from every visited nodex to the computation seed nodes), which solves
several rank normalization problems (e.g. distinguish between a peer with whom some
peeri did not interact and a peer with whomi had bad experiences).

[11] builds a Web of trust, with each user having to maintain trust values on a small
number of other users. The algorithm presented is designed for an application within
the context of the Semantic Web, composed of logical assertions. This helps introducing
personalization, as each user would have a level of local belief in statements and a level
of trust in other users, all of which could then be merged to reflect a global meaning. [9]
presents an interesting method based on a quorum of other peers, who are asked about
their opinion on some peerp, instead of relying on a fixed-point algorithm. This results
in reduced network traffic, but comes at the cost of not achieving a global perspective on
the trustworthiness of peerp. A related approach is presented in [5], where the FOAF [3]
schema is extended to contain trust assertions between peers. The inferred rating from
a source peer to a sink one is (recursively) computed using the weighted average of the
neighbors’ reputation ratings of the sink. [8] is a fixed-point PageRank-like distributed
computation of reputation values in a P2P network. We used its model in designing
our algorithm, as well as the investigations about possible attacks from malicious peers.
Just as [7] improves [10], our algorithm extends the capabilities of [8] by introducing
personalization into the computation.

For global ranking algorithms, we distinguish three targets based on fixed-point
iterations: (1) Web pages [10, 7, 6], (2) linked documents in P2P networks [12, 14, 1],
and (3) peers in P2P networks [8]. In all cases, input data can be represented as a
directed graph with the targets of the algorithm as nodes. For ranking Web pages or
documents, graph edges are the hyperlinks, whereas for building reputation values they
resemble peers’ experiences with other peers. These approaches are summarized in
table 1.

2.2 Personalized PageRank

Description. [7] is the most recent investigation towards personalized page ranks. We
give a more detailed description of this algorithm in the following paragraph, as we will
extend this algorithm to compute personalized trust values in a distributed way.

Outcome Node in graph Edge in graph
Web page ranks [10] Web page Hyperlink
Personalized Web page ranks [7, 6] Web page Hyperlink
Document ranks (distributed) [12, 14] Document on a peerHyperlink between two documents
Personalized document ranks (distributed) [1] Document on a peerHyperlink between two documents
Reputation values (distributed) [8] Peer Download experience of peers
Personalized reputation values (distributed) - this paperPeer Download experience of peers

Table 1.Hyperlink structures used by different ranking algorithms

[7] introduces personalized PageRank Vectors (PPV) computed for each user. The
personalization aspect of this algorithm stems from aset of hubs(H), and each user
has to select herpreferred pagesfrom this set. PPVs can be expressed as a linear com-
bination of basis vectors (PPVs for preference vectors with a single non-zero entry
corresponding to each of the pages from P, the preference set), which could be selected
from the precomputed basis hub vectors, one for each page from H. To avoid the mas-
sive storage resources basis hub vectors would use, they are decomposed into partial
vectors (which encode the part unique to each page, computed at run-time) and the hub
skeleton (which captures the interrelationships among hub vectors, stored off-line).

Algorithm. In the first part of the paper, the authors present three different algorithms
for computing basis vectors: ”Basic Dynamic Programming”, ”Selective Expansion”
and ”Repeated Squaring”. In the second part, specializations of these algorithms are
combined into a general algorithm for computing PPVs, as depicted below.

Algorithm 1 . Personalized PageRank in a centralized fashion.

Let D[p] be the approximation ofp’s basis vector, andE[p] the error of its computation.
1.(Selective Expansion)Compute the partial vectors using
Q0(p) = V andQk(p) = V \ H, for k > 0, in the formulas below:

Dk+1[p] = Dk[p] +
∑

q∈Qk(p) c · Ek[p](q)xq

Ek+1[p] = Ek[p] −
∑

q∈Qk(p) Ek[p](q)xq +
∑

q∈Qk(p)
1−c
|O(q)|

∑|O(q)|
i=1 Ek[p](q)xOi(q)

Under this choice,Dk[p] + c ∗ Ek[p] will converge torp − rHp ,
the partial vector corresponding to pagep.

2.(Repeated squaring)Having the results from the first step as input, one can now
compute the hubs skeleton (rp(H)). This is represented by the finalD[p] vectors
calculated usingQk(p) = H into:

D2k[p] = Dk[p] +
∑

q∈Qk(p) Ek[p](q) ∗ Dk[q]
E2k[p] = Ek[p] −

∑
q∈Qk(p) Ek[p](q)xq +

∑
q∈Qk(p) Ek[p](q)Ek[q]

3. Let u = α1p1 + · · · + αzpz, pi ∈ H, i = 1, 2, .., z, be a preference vector, and let:
ru(h) =

∑z
i=1 αi(rpi

(h) − c ∗ xpi
(h)), h ∈ H, computable from the hubs skeleton.

The PPV v for u can then be constructed as:
v =

∑z
i=1 αi(rpi

− rH
pi

) + 1
c

∑
h∈H ru(h)>0 ru(h) ∗

[
(rh − rHh) − c ∗ xh

]

3 Personalized Reputation Values in P2P Networks

3.1 Introduction

In our distributed algorithm for computing personalized reputation values we start from
a setH of pre-trusted peers (calledhub peershereafter). Each peer will have its own
preference setP ⊂ H. Even though all hub peers are highly trusted, each peer trusts
some of them (those fromP) more than it trusts the others. Generally, this happens
because they provide better quality of service or faster and more downloads, in a specific
area of interest. In a services network, for example, a peer might prefer the abilities of
one or several hub peers, because they supply very good results in the specific service
domain it is interested in.

What is the intuition behind personalized trust values in a P2P network, and, even
more importantly, in which way does personalization of trust values improve on global
trust rating systems, where only one trust value is established per peer, encompassing all
other peers’ interactions with this peer? The notion of personally selected pre-trusted
peers gives an elegant answer: When a peer in the network selects a subset of pre-
trusted peers which it trusts most, it does not necessarily consider these peers as more
trustworthy than other pre-trusted peers - in fact, all pre-trusted peers should be entirely
trustworthy, i.e., always strive to provide authentic file uploads or non- malicious ser-
vices. Rather, a peer selects those pre-trusted peers whose trust ratings and experiences
with peers in the network are mostrelevant to this peer’s operations within the P2P
network. The peer may operate in a content domain in which certain peers have pro-
vided seamless and perfectly trustworthy service - even though they would have a low
global trust rating due to other peers being much more active in responding to popular
queries. Hence, personalization of trust values does not only establish a web of trust, it
creates personal webs of trust in which peers with similar interests cooperate to choose
the most trustworthy peers in their peer group.

But what if a peer does not preferanyhub peer, but some other peerh′? There are
several solutions which cope with this (see [2]), the simplest one being a breadth-first
search aroundh′ with the minimum radius such that at least a hub peer is discovered,
thus selecting the hub peer(s) closest toh′.

We divide the algorithm in three parts, as presented in section 2.2: One part fo-
cuses mostly on peers outside the set of pre-trusted peers,V \H (Algorithms 3.1.1 and
3.1.2), one on peers within the set of pre-trusted peersH (Algorithm 3.2), and the final
algorithmic step ties everything together (Algorithm 3.3).

3.2 Partial Vectors

This part of the algorithm consists of one special initialization step and several suc-
ceeding steps. Even though its focus is on peers fromV \ H, peersp ∈ H also
gather their components ofD andE. All peers normalize their trust values asγq(i) =
γq(i)/

∑
i γq(i). In the first step, each peerq ∈ V computesE[p](q). As peersp ∈ H

are known, each peerq ∈ V can set its initial valuesD0[p](q) andE0[p](q) by itself to:

D0[p](q) =
{

c , q ∈ H
0 , otherwise

; E0[p](q) = T0[p](q) =
{

1 , q ∈ H
0 , otherwise

(1)

Non-hub peers.After this initialization, the following operations will be executed
in parallel by each peerq ∈ V \ H for eachp ∈ H:

Algorithm 3.1.1. Distributed computation of partial vectors by peers inV \ H.

1: Send 1−c
|O(q)| · Tk[p](q) · γq(i) to all peersi from whichq has

downloaded files, including those fromH.
2: Wait from all peers which downloaded files fromp theirTk[p](∗) (at this stepk)
3: After all Tk[p](∗) values have been received, computeTk+1[p](q) as:

Tk+1[p](q) =
∑

v∈I(q) Tk[p](v)
4: Compute:

Dk+1[p](q) = Dk[p](q) + c · Tk[p](q)
N being the number of steps we apply the Selective Expansion algorithm.

5: If there are more iterations left, go to 1
6: Each peerq ∈ V \ H computes(rp − rH

p)(q) = DN [p](q) + c · TN [p](q),
its component of the partial vector corresponding top.

Theorem 1. In the distributed version of the Selective Expansion algorithm, forp ∈ H
each peerq ∈ V \ H has to compute:

Tk+1[p](q) =
∑

v∈I(q)

1 − c

|O(v)|
· Ek[p](v) · γv(q) (2)

Proof. Due to space limitations, we refer the reader to [1] for the proof of this theorem.

Hub peers.In the special first step, a peerp ∈ H will send 1−c
|O(q)| · Tkp · γp(i)

to all peersi from which it has downloaded files, including those fromH. After that, it
will execute the following operations:

Algorithm 3.1.2. Distributed computation of partial vectors by peers inH.

1: Wait from all peers which downloaded files fromp theirTk[p](∗) (at this stepk)
2: After all Tk[p](∗) values have been received, doTk+1p =

∑
v∈I(q) Tk[p](v)

3: If there are more iterations left, go to 1
4: Compute:Ep =

∑N
k=1 Tkp

5: SetDN p to c
6: Each peerp ∈ H computes(rp − rH

p)(p), its component of its partial vector.

Algorithms 3.1.1 and 3.1.2 perform a power-iteration, and they would therefore
converge also in the presence of loops in G (see [7, 10] for details), whereas the high
level of dynamics of a P2P network (peers skipping participation in one or more itera-
tions because entering or leaving the network, etc.) would only result in some additional
iterations until convergence.

3.3 Hub Skeleton

In the second phase of the algorithm, each hub peer (p ∈ H) has to calculate its hub
skeleton (rp(H)) using as input the results from the previous stage. The output is stored
in the valuesD2k[p] obtained after the last iteration of the following operations:

Algorithm 3.2. Distributed computation of hub skeleton (only inH).

1: CalculateD2k[p] andE2k[p], using the centralized version formulas
2: Multicast the results to all other peersq ∈ H, possibly using a minimum

spanning tree for that.
3: If there are more iterations left, go to 1.
4: Every hub peer broadcasts itsD2N[p] sub-vector (only the components

regarding pages fromH).

As this step refers to hub-peers only, the computation ofD2k[p] andE2k[p] can
consideronly the components regarding pages fromH.

3.4 PPV

As theD2N[p] sub-vectors have been broadcast,anypeerv ∈ V can now determine its
rv(P) locally, using the original formula (see sec. 2.2). It can also calculate its partial
PPV containing its reputation and the reputation of any other peers from its own point of
view. If NB is the set of peers whose rankv wants to compute, it must do the following:

Algorithm 3.3. Computation of the Personalized Reputation Vector.

1: Request the components ofrp − rHp for all p ∈ H from all peers fromNB.
2: Compute the components of the PPV using the original formula (see section 2.2).

Of course, if laterv wants to compute the reputation value of another peer, it would
only need to ask the new peer about its components ofrp − rHp .

4 Secure Computation of Personalized Reputation Values

From a security point of view, the algorithm as described above contains two critical
components. First, pre-trusted peers play an important role in computing trust values.
Hence an implementation of the algorithm has to make sure that they behave correctly.
Fortunately, only very few pre-trusted peers are required in a network (see also Section
5) such that the administrative task of ensuring this behavior will present little overhead.
Second, non-pre-trusted peers calculate trust values for themselves, or at least contribute
to their calculation. This gives each peer major power over his own trust rating. A secure

version of the algorithm thus has to ensure that malicious peers in the network have
limited or no impact on the computation of their own trust ratings.

We achieve this in two steps: First, by having another, deterministically chosen peer
in the network take over a peer’s calculation job on his own trust value, becoming
this peer’s proxy calculation peer. Second, by adding redundancy to the calculations
through having each calculation being performed by several peers in parallel. Each peer
can be queried for the results of his calculations, and the final result of a calculation is
determined through a majority vote among the collaborating peers.

We organize the network into a distributed hash table, using a scheme such as Chord
[13]. Each peer’s IP address is mapped into a logical hash space. Through random as-
signment upon joining the network, each peer covers a part of the hash space, becoming
the proxy calculation peer for all peers whose network address has been mapped into
its domain in the hash space. Several proxy peers can be associated with a peer by ap-
plying several different hash functions. Each hash function is deterministic, i.e., each
peer in the network can infer the location of a proxy calculation peer on the DHT grid
and route requests for calculation results appropriately.

5 Experimental Results

We tested our algorithms on simulated P2P networks which exhibit a power-law con-
nectivity distribution, because popular real-world networks (e.g. Gnutella [4]) are struc-
tured as such. Peers were selected as download source with a probability proportional to
their rank: Due to the power-law distribution, highly ranked peers were selected much
more often than other peers, which reflects real-world P2P traffic distributions. Unless
stated differently, the set of pre-trusted peers contained 5 (hub) peers, and the prefer-
ence set of each ordinary peer contained 2-3 hub peers randomly selected. We always
ran algorithms 3.1.* for 6 iterations, and algorithm 3.2 for 10 iterations, as in [7].

Resources used.We first generated a graph with 10,000 nodes in order to assess
the amount of network traffic required by the algorithm. The set of pre-trusted peers
contained 150 (hub) peers, while the preference set of each ordinary peer contained 30
hub peers randomly selected. Results are summarized in tables 2 and 3.

In our statistics, we distinguish between ordinary peers and hub peers. Hub peers
generate significantly more traffic because of the second phase of the computation (al-
gorithm 3.2), in which they need to multicast their intermediate results to all other hub
peers. However, there is usually a small number of such peers compared to the size of
the network, and they also control more resources (e.g. bandwidth or processing power).

Max. Size Avg. Size
All Data 1,989,0721,979,695
6= 0 Data 1,944,7641,938,796

Table 2.Data transferred by hub peers (nb. of
real values sent)

Max. SizeAvg. Size
All Data 101,232 4,231.3
6= 0 Data 5,360 84.69

All Data, 1 iteration 665 27.91
6= 0 Data, 1 iteration 171 2.043

Table 3.Data transfered by ordinary peers (nb. of
real values sent)

1.93e+06

1.94e+06

1.95e+06

1.96e+06

1.97e+06

1.98e+06

1.99e+06

0 20 40 60 80 100 120 140 160

"HubsTransfer"
"HubsTransferNonZero"

Fig. 1. Data transfered by hub peers (nb. of real
values sent)

0

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

"NonHubsTransfer"
"NonHubsTransferNonZero"

Fig. 2. Data transfered by ordinary peers (nb. of
real values sent)

We observed only reduced communication for ordinary peers, which means that for the
majority of the network, the computation needs only very small bandwidth. We also
noticed that many peers often send the value ”0” through the network (as a correct in-
termediate value), and therefore a further modification of the algorithm which avoids
sending it would reduce the traffic even more. Figures 1 and 2 present the traffic gen-
erated by each peer in the network. As we are dealing with a power-law network, we
can observe the power-law distribution of data size among the ordinary peers. This is
because the more neighbors a peer has, the more data it needs to exchange.

Robustness.An important aspect of a reputation algorithm is to be robust against
attacks of malicious peers, which try to subvert the network by uploading inauthentic
files or providing faulty services. For these tests, we simulated possible attacks as de-
scribed in [8]. As our algorithm is also based on a power-iteration, the percentages of
inauthentic files malicious peers are able to upload in the presence of the reputation
system should be similar to those from [8]. In all experiments, we assumed the network
to have an initial structure, i.e. peers have some initial trusts in other peers, generated
randomly following a power-law distribution. We ran 30 query cycles, each of them
consisting of sending 50 queries through the network. After each query cycle one more
iteration of the selective expansion took place, as well as an update of the reputation
vectors at each peer. The results of repeated squaring were updated only once in 5 cy-
cles, as they need more computational resources.

Threat Model A.Malicious peers always provide an inauthentic file when selected as
download source. They set their local trust values to 1 -sij , i.e. the opposite of their real
trust value. The network consists of 63 good peers and 0, 7, 14, 25, 37, and 60 malicious
peers respectively. Each good peer answers a corrupt file with 5% probability.

Threat Model B.Malicious peers of type A form a malicious collective. They set
their local trust values to 1 - sij for good peers, and to 1 for any other malicious peers
(i.e. complete trust in the other malicious peers). The peer distribution has the same
characteristics as in threat model A.

Discussion.In both cases, the average fraction of inauthentic downloads is about
11% and does not exceed 13.5%, which represents a significant decrease against a net-

Fig. 3.Threat A: Mal. peers provide corrupt files
and set their trust opposed to the real values.

Fig. 4.Threat B: Malicious peers of type A also
form a collective.

work without a reputation system in place. Moreover, malicious collectives are broken
by our algorithm, as they only add 1-2% extra inauthentic downloads.

Threat Model C.Malicious peers of type B provide an inauthentic file inf% of all
cases when selected as download source, with anf varying from 0 to 100 in steps of
10. The network consists of 53 good peers and 20 malicious ones.

Threat Model D.A first group of malicious peers of type D provide authentic files
with 95% probability (just as the good peers), but additionally assign a trust of 1 to all
malicious peers of the second type, B. There are 63 good peers and 40 malicious ones,
the latter ones having different roles in different experiments, as depicted in figure 6.

Discussion.Here, malicious peers try to increase their rating by also providing good
files. In model C, the maximum amount of inauthentic files they insert in the network
is 17.6%, achieved when providing 50% good answers. Forf = 70% (e.g. 365 good
answers and 1215 bad ones), there were only 7.3% corrupt downloads in the entire
network. Finally, the increase of bad downloads is also small when some peers acting
correctly are trying to boost the reputation of the malicious ones. Although results in
the right side of figure 6 are comparable to the random case, they require too much
effort from malicious peers. For example, with 15 B peers and 25 D peers, they need to
upload 1420 good files altogether in order to distribute 1197 inauthentic ones.

Generally, we can conclude that the robustness of our algorithm against malicious
peers is very similar to that of EigenTrust [8] and thus the addition of personalization
into a fixed-point reputation algorithm does not make it more vulnerable.

6 Conclusions

We have presented an algorithm which computes personalized global reputation values
in P2P networks based on a fixed-point iteration and having peers’ previous experiences
as input. We also described a secure method to compute global trust values, in order to
assure identification and isolation of malicious peers. We showed how to implement the
reputation system in a scalable and distributed manner and simulated several possible
subversion attacks. Our algorithm proved to be as robust against them as [8], while
adding personalization to the global ranks computed by each peer.

Fig. 5. Threat C: Malicious collective providing
f% correct answers.

Fig. 6. Threat D: Malicious group boosting the
reputation of a malicious collective of type B.

References

1. Paul-Alexandru Chirita, Wolfgang Nejdl, and Oana Scurtu. Knowing where to search: Per-
sonalized search strategies for peers in p2p networks. InProceedings of the P2P Information
Retrieval Workshop held at the 27th International ACM SIGIR Conference, 2004.

2. Paul-Alexandru Chirita, Daniel Olmedilla, and Wolfgang Nejdl. Pros: A personalized rank-
ing platform for web search. InProceedings of the International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, Aug 2004.

3. E. Dumbill. Finding friends with xml and rdf.
4. Gnutella web page: http://www.gnutella.com/.
5. J. Golbeck, B. Parsia, and J. Hendler. Trust networks on the semantic web. InProceedings

of Cooperative Intelligent Agents, 2003.
6. T. Haveliwala. Topic-sensitive pagerank. InIn Proceedings of the Eleventh International

World Wide Web Conference, Honolulu, Hawaii, May 2002.
7. G. Jeh and J. Widom. Scaling personalized web search. InProceedings of the 12th Interna-

tional World Wide Web Conference, 2003.
8. S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation

management in p2p networks. InProceedings of the 12th Intl. WWW Conference, 2003.
9. S. Marti and H. Garcia-Molina. Limited reputation sharing in p2p systems. InProceedings

of ACM Conference on Electronic Commerce (EC04), 2004.
10. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford University, 1998.
11. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic web. In

Proceedings of the 2nd International Semantic Web Conference, 2003.
12. K. Sankaralingam, S. Sethumadhavan, and J. C. Browne. Distributed pagerank for p2p sys-

tems. InProceedings of the 12th IEEE International Symposium on High Performance Dis-
tributed Computing, 2003.

13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup lervice for internet applications. InProceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications,
San Diego, USA, August 2001.

14. A. Yamamoto, D. Asahara, T. Itao, S. Tanaka, and T. Suda. Distributed pagerank: A dis-
tributed reputation model for open peer-to-peer networks. InProceedings of the 2004 Sym-
posium on Applications and the Internet-Workshops, 2004.

15. C. Ziegler and G. Lausen. Spreading activation models for trust propagation. InProceedings
of the IEEE International Conference on e-Technology, e-Commerce, and e-Service, 2004.

